Monday, 4 January 2016

Pengertian dari Jembatan Wheatstone

Apa itu jembatan wheatstone?
Meskipun namanya jembatan tapi jembatan yang satu ini bukan berbentuk konstruksi jembatan yang sering kita lihat. yang menghubungkan dua tempat terpisah karena sesuatu (misal jembatan di sungai). Istilah jembatan wheatstone dipakai dalam rangkaian elektronika untuk menyebut suatu rangkaian komponen elektronika.
Wheatstone bridge
Jembatan Wheatstone (Wheatstone Bridge)
Rangkaian elektrik ini dibuat oleh Samuel Hunter Christie pada tahun 1833 dan dikembangkan lebih lanjut dan dipopulerkan oleh Sir Charles Wheatstone pada tahun 1843 sehingga terkenal dengan jembatan wheatstone. Gunanya adalah untuk mengukur hambatandengan cara menyeimbangkan kedua sisi rangkaian jembatan(bridge circuit). Satu sisi jembatan terdapat komponen yang tak diketahui nilai resistansinya sedangkan sisi lain diketahui nilai resistansinya. Operasi ini juga mirip dengan potensiometer. Jembatan ini dibuat dengan merangkai empat buah hambatan dalam susunan seperti gambar di atas ini.

Operasi

Pada gambar di atas, Rx adalah komponen yang ingin diketahui hambatannya. R1, R2, dan R3 adalah resistor yang diketahui hambatannya dan hambatan pada R2 dapat diubah dan disesuaikan. Jika perbandingan antara kedua hambatan di sisi yang diketahui (R2/R1) sama dengan perbandingan sisi yang dicari, tegangan antara kedua titik potong (B dan D) akan menjadi nol dan tak ada arus listrik yang mengalir melalui galvanometer Vg. Jika jembatan tak seimbang (atau nilai salah satu sisi hambatan lebih besar dari hambatan lainnya), arah arus yang mengalir akan mengindikasikan apakah R2 terlalu tinggi atau terlalu rendah.  Rakan bervariasi atau diubah-ubah nilainya sampai tidak ada arus mengalir melalui galvanometer, yang berarti terbaca nol.
Pada posisi seimbang, perbandingan antara R2 / R1 = Rx / R3
Atau dapat ditulis Rx = (R2 / R1) x R3
Selain itu, jika R1, R2 dan R3 diketahui namun R2 tidak dapat diubah-ubah nilai hambatannya, perbedaan tegangan yang ada atau arus yang mengalir melalui galvanometer dapat digunakan untuk mengukur nilai Rx. Hmmm… gimana caranya? Kita dapat menggunakan hukum Kirchoff (disebut juga dengan aturan Kirchoff) untuk melakukannya.

Penurunan Rumus

Kita sudah melihat bagaimana rumus untuk menghitung hambatan yang ingin diketahui. Namun darimana kita bisa mendapatkan persamaan tersebut? Petunjuknya adalah menggunakan hukum Kirchoff. Lebih tepatnya adalah hukum Kirchoof pertama untuk mencari arus yang mengalir pada simpul B dan D.
I_3 \ - I_x \ + I_g = 0
I_1 \ - I_2 \ - I_g = 0
Kemudian hukum Kirchoff kedua untuk mencari tegangan pada loopABD dan BCD.
(I_3 \cdot R_3) - (I_g \cdot R_g) - (I_1 \cdot R_1) = 0
(I_x \cdot R_x) - (I_2 \cdot R_2) + (I_g \cdot R_g) = 0
Jika dianggap jembatan dalam keadaan seimbang, Ig = 0, sehingga persamaan di atas dapat ditulis sebagai berikut:
I_3 \cdot R_3 = I_1 \cdot R_1
I_x \cdot R_x = I_2 \cdot R_2
Kemudian persamaan-persamaan tersebut dibagi dan disusun menjadi:
R_x = {{R_2 \cdot I_2 \cdot I_3 \cdot R_3}\over{R_1 \cdot I_1 \cdot I_x}}
Dari aturan pertama, I3 = Ix and I1 = I2 Sehingga nilai Rx sekarang diketahui dengan persamaan:
R_x = {{R_3 \cdot R_2}\over{R_1}}
Jika keempat nilai resistor dan sumber tegangan diketahui dan hambatan galvanometer cukup tinggi sehingga arus Ig dapat diabaikan, tegangan pada jembatan (VG) dapat diketahui dengan cara memeriksa tegangan setiap pembagi tegangan dan mengurangi nilainya dari masing-masing komponen lain. Langsung saja contohnya:
V_G = {{R_x}\over{R_3 + R_x}}V_s - {{R_2}\over{R_1 + R_2}}V_s
Persamaan ini dapat disederhanakan menjadi:
V_G = \left({{R_x}\over{R_3 + R_x}} - {{R_2}\over{R_1 + R_2}}\right)V_s
Dimana VG adalah tengangan simpul B relatif terhadap simpul D.

No comments:

Post a Comment