Wednesday 9 December 2015

Pengertian dari Sensor dan Tranduser

PENGERTIAN SENSOR DAN TRANDUSER
1. Sensor adalah alat yang dapat digunakan untuk mendeteksi dan sering berfungsi untuk mengukur magnitude sesuatu. Sensor adalah jenis transduser yang digunakan untuk mengubah variasi mekanis, magnetis, panas, sinar dan kimia menjadi tegangan dan arus listrik. Sensor biasanya dikategorikan melalui pengukur dan memegang peranan penting dalam pengendalian proses pabrikasi modern. Sensor memberikan ekivalen mata, pendengaran, hidung lidah dan menjadi otak mikroprosesor dari sistem otomatisasi industri.
A. Macam-macam Sensor
1). Sensor Proximity
Sensor proximity merupakan sensor atau saklar yang dapat mendeteksi adanya target jenis logam dengan tanpa adanya kontak fisik. Biasanya sensor ini tediri dari alat elektronis solid-state yang terbungkus rapat untuk melindungi dari pengaruh getaran, cairan, kimiawi, dan korosif yang berlebihan. Sensor proximity dapat diaplikasikan pada kondisi penginderaan pada objek yang dianggap terlalu kecil atau lunak untuk menggerakkan suatu mekanis saklar.

2). Sensor Magnet
Sensor Magnet atau disebut juga relai buluh, adalah alat yang akan terpengaruh medan magnet dan akan memberikan perubahan kondisi pada keluaran. Seperti layaknya saklar dua kondisi (on/off) yang digerakkan oleh adanya medan magnet di sekitarnya. Biasanya sensor ini dikemas dalam bentuk kemasan yang hampa dan bebas dari debu, kelembapan, asap ataupun uap.


3). Sensor Sinar
Sensor sinar terdiri dari 3 kategori. Fotovoltaic atau sel solar adalah alat sensor sinar yang mengubah energi sinar langsung menjadi energi listrik, dengan adanya penyinaran cahaya akan menyebabkan pergerakan elektron dan menghasilkan tegangan. Demikian pula dengan Fotokonduktif (fotoresistif) yang akan memberikan perubahan tahanan (resistansi) pada sel-selnya, semakin tinggi intensitas cahaya yang terima, maka akan semakin kecil pula nilai tahanannya. Sedangkan Fotolistrik adalah sensor yang berprinsip kerja berdasarkan pantulan karena perubahan posisi/jarak suatu sumber sinar (inframerah atau laser) ataupun target pemantulnya, yang terdiri dari pasangan sumber cahaya dan penerima.

4). Sensor Ultrasonik
Sensor ultrasonik bekerja berdasarkan prinsip pantulan gelombang suara, dimana sensor ini menghasilkan gelombang suara yang kemudian menangkapnya kembali dengan perbedaan waktu sebagai dasar penginderaannya. Perbedaan waktu antara gelombang suara dipancarkan dengan ditangkapnya kembali gelombang suara tersebut adalah berbanding lurus dengan jarak atau tinggi objek yang memantulkannya. Jenis objek yang dapat diindera diantaranya adalah: objek padat, cair, butiran maupun tekstil.


5). Sensor Tekanan
Sensor tekanan - sensor ini memiliki transduser yang mengukur ketegangan kawat, dimana mengubah tegangan mekanis menjadi sinyal listrik. Dasar penginderaannya pada perubahan tahanan pengantar (transduser) yang berubah akibat perubahan panjang dan luas penampangnya.


6). Sensor Kecepatan (RPM)
Proses penginderaan sensor kecepatan merupakan proses kebalikan dari suatu motor, dimana suatu poros/object yang berputar pada suatu generator akan menghasilkan suatu tegangan yang sebanding dengan kecepatan putaran object. Kecepatan putar sering pula diukur dengan menggunakan sensor yang mengindera pulsa magnetis (induksi) yang timbul saat medan magnetis terjadi.

7). Sensor Penyandi ( Encoder )
Sensor Penyandi ( Encoder ) digunakan untuk mengubah gerakan linear atau putaran menjadi sinyal digital, dimana sensor putaran memonitor gerakan putar dari suatu alat. Sensor ini biasanya terdiri dari 2 lapis jenis penyandi, yaitu; Pertama, Penyandi rotari tambahan ( yang mentransmisikan jumlah tertentu dari pulsa untuk masing-masing putaran ) yang akan membangkitkan gelombang kotak pada objek yang diputar. Kedua, Penyandi absolut ( yang memperlengkapi kode binary tertentu untuk masing-masing posisi sudut ) mempunyai cara kerja sang sama dengan perkecualian, lebih banyak atau lebih rapat pulsa gelombang kotak yang dihasilkan sehingga membentuk suatu pengkodean dalam susunan tertentu.


8). Sensor Suhu
Terdapat 4 jenis utama sensor suhu yang umum digunakan, yaitu thermocouple (T/C)- lihat gambar 1.6, resistance temperature detector (RTD), termistor dan IC sensor. Thermocouple pada intinya terdiri dari sepasang transduser panas dan dingin yang disambungkan dan dilebur bersama, dimana terdapat perbedaan yang timbul antara sambungan tersebut dengan sambungan referensi yang berfungsi sebagai pembanding. Resistance Temperature Detector (RTD) memiliki prinsip dasar pada tahanan listrik dari logam yang bervariasi sebanding dengan suhu. Kesebandingan variasi ini adalah presisi dengan tingkat konsisten/kestabilan yang tinggi pada pendeteksian tahanan. Platina adalah bahan yang sering digunakan karena memiliki tahanan suhu, kelinearan, stabilitas dan reproduksibilitas. Termistor adalah resistor yang peka terhadap panas yang biasanya mempunyai koefisien suhu negatif, karena saat suhu meningkat maka tahanan menurun atau sebaliknya. Jenis ini sangat peka dengan perubahan tahan 5% per C sehingga mampu mendeteksi perubahan suhu yang kecil. Sedangkan IC Sensor adalah sensor suhu dengan rangkaian terpadu yang menggunakan chipsilikon untuk kelemahan penginderanya. Mempunyai konfigurasi output tegangan dan arus yang sangat linear.

2. Transduser berasal dari kata “traducere” dalam bahasa Latin yang berarti mengubah. Sehingga transduser dapat didefinisikan sebagai suatu peranti yang dapat mengubah suatu energi ke bentuk energi yang lain.
Dari sisi pola aktivasinya, transduser dapat dibagi menjadi dua,
yaitu:
1). Transduser pasif, yaitu transduser yang dapat bekerja bila mendapat energi tambahan dari luar.
Contohnya adalah thermistor. Untuk mengubah energi panas menjadi energi listrik yaitu tegangan listrik, maka thermistor harus dialiri arus listrik. Ketika hambatan thermistor berubah karena pengaruh panas, maka tegangan listrik dari thermistor juga berubah.


2).Transduser aktif, yaitu transduser yang bekerja tanpa tambahan energi dari luar, tetapi menggunakan energi yang akan diubah itu sendiri.
Contohnya adalah termokopel. Ketika menerima panas, termokopel langsung menghasilkan tegangan listrik tanpa membutuhkan energi dari luar.

Pemilihan suatu transduser sangat tergantung kepada kebutuhan
pemakai dan lingkungan di sekitar pemakaian. Untuk itu dalam
memilih transduser perlu diperhatikan beberapa hal di bawah ini:
1. Kekuatan, maksudnya ketahanan atau proteksi pada beban lebih.
2. Linieritas, yaitu kemampuan untuk menghasilkan karakteristik masukan-keluaran yang linier.
3. Stabilitas tinggi, yaitu kesalahan pengukuran yang kecil dan tidak begitu banyak terpengaruh oleh faktor-faktor lingkungan.
4. Tanggapan dinamik yang baik, yaitu keluaran segera mengikuti masukan dengan bentuk dan besar yang sama.
5. Repeatability, yaitu kemampuan untuk menghasilkan kembali keluaran yang sama ketika digunakan untuk mengukur besaran yang sama, dalam kondisi lingkungan yang sama.
6. Harga. Meskipun faktor ini tidak terkait dengan karakteristik transduser sebelumnya, tetapi dalam penerapan secara nyata seringkali menjadi kendala serius, sehingga perlu juga dipertimbangkan.
KESIMPULAN
Sensor adalah alat untuk mendeteksi suatu perubahan yang terjadi, misalnya: perubahan suhu, perubahan temperatur, perubahan tekanan, atau perubahan gaya menjadi sinyal-sinyal listrik yang kemudian diproses agar bisa terbaca dan dirasakan hasil/pengaruhnya oleh manusia.
Jenis – jenis sensor diantaranya :
> Sensor cahaya
> Sensor suhu
> Sensor gaya
> Sensor tekanan
Tranduser adalah alat yang dapat mengubah energi dari satu bentuk ke bentuk yang lain. Dari sisi pola aktivasinya, transduser dapat dibagi menjadi dua, Transduser pasif dan Transduser aktif.

Sumber : Perpustakaan Universitas Mercu Buana , Jakarta

Saturday 14 November 2015

Kriteria dalam memilih pompa

Þ   Kriteria dalam memilih pompa
Ø  Pompa reciprocating
Ø  Proses yang memerlukan head tinggi
Ø  Kapasitas fluida yang rendah
Ø  Liquid yang kental (viscous liquid) dan slurrie (lumpur)
Ø  Liquid yang mudah menguap (high volatile liquid)
Ø  Pompa sentrifugal
Ø  Konstruksinya sederhana dan murah
Ø  Kecepatan putarannya stabil
Ø  Dapat dihubungkan langsung dengan motor pengendali
Ø  Discharge linenya bisa ditutup sebagian atau bisa ditutup  penuh tanpa merusak pompa.
Ø  Dapat menangani liquid yang mengandung solid yang banyak.
Ø  Ongkos perawatan lebih rendah bila dibandingkan dengan reciprocating pump.
Ø  Dapat dibuat dari bahan tahan korosi.

Þ   Prinsip kerja pompa sentrifugal:
Fluida Masuk melalui bagian suction yang dihubungkan secara cocentric dengan suatu poros yang mempunyai element yang berputar secara cepat yang disebut impeller. Impeller ini mempunyai baling-baling radial.
Liquid mengalir masuk dan keluar ruangan antara dua vane dan meninggalkan impeller dengan kecepatan yang tinggi, kemudian ditampung dalam casing yang berbentuk spiral yang disebut volute, dan meninggalkannya secara tangensial melalui discharge. Di dalam volute ini velocity head dari liquid dirubah menjadi pressure head. Tenaga untuk memutar impeller diperoleh dari luar, yaitu dari direct connected motor pada kecepatan konstan biasanya sekitar 3500 rpm.

Þ   Kavitasi :
Kondisi dimana terjadinya bubble (gelembung udara) di dalam pompa akibat kurangnya NPSHa (terjadi vaporisasi) dan pecah pada saat bersentuhan denganimpeller atau casing.

Þ   Ciri – ciri kavitasi :

Ø  Suara berisik
Ø  Adanya getaran pada pompa
Ø  Bunyi dengung keras pada pipa
Ø  Tekanan buang yang fluktuasi


Þ   Penyebab kavitasi :
Ø  Luasan aliran pada mata impeller pompa biasanya lebih kecil dari daripada luasan aliran pipa hisap pompa atau luas aliran yang melalui baling baling impeller. Ketika cairan dipompakan memasuki mata pompa sentrifugal, pengurangan luas area aliran terjadi seiring penambahan kecepatan aliran seiring dengan pengurangan tekanan. 
Ø  Jumlah aliran pompa yang lebih besar, penurunan tekanan yang lebih besar antara lubang hisap pompa dengan mata impeller. Jika tekanan yang turun cukup besar, atau temperatur cukup tinggi, tekanan yang turun mungkin cukup untuk menyebabkan kavitasi . 
Ø  Banyak gelembung  udara terbentuk akibat tekanan yang jatuh di ujung impeller di sapu oleh baling baling impeller  melalui aliran fluidanya. Ketika  gelembung udara memasuki daerah  dimana tekanan local  lebih besar dari tekanan uap yang menjauhi baling baling impeller, tiba  tiba meletup. Proses pembentukan gelembung udara dan berikutnya meletup di dalam pompa disebut kavitasi.
Ø  Friksi antara permukaan fluida yang akan dipompakan dengan pompa inlet besar (Hfs>>), sehingga dapat mengurangi NPSHA.
Ø  Menurunnya tekanan absolut atau karena ketinggian (PA<<), dimana tekanan absolut yang tinggi sangat dibutuhkan untuk menaikkkan NPSHA. Penurunan tekanan absolut di dalam tangki disebabkan karena tekanan hidrostastis fluida yang semakin kecil karena level cairan akan semakin rendah karena cairan di dalam tangki semakin lama semakin berkurang jumlahnya.
Ø  Naiknya temperatur dari pompa liquid (PV>>), peningkatan temperatur disebabkan karena adanya gesekan fluida, sehingga dengan naiknya temperatur tekanan uap fluida juga akan meningkat. Jika tekanan uap semakin besar maka kemungkinan terjadinya kavitasi akan semakin besar.

Þ   Akibat kavitasi :
Ø  Kavitasi menurunkan performa pompa, menyebabkan fluktuasi jumlah aliran  dan tekanan buang.
Ø  Menyebabkan kerusakan komponen pompa bagian dalam. Ketika pompa mengalami kavitasi, gelembung udara terbentuk didaerah tekanan rendah tepat sebelum putaran baling baling impeller. Gelembung uap kemudian bergerak pada baling baling impeller, dimana mereka meletup  dan menyebabkan kejutan secara fisik, pada sudut depan baling baling impeller. Kejutan secara fisik membuat bintik bintik kecil  pada bagian ujung baling baling impeller. Setiap bintik bintik kecil mempunyai ukuran mikron, tetapi akibat akumalasi dari jutaan bintik bintik ini dari waktu kewaktu benar benar merusak impeler pompa.
Ø  Menyebabkan kelebihan getaran pada pompa, yang mana bisa menyebabkan kerusakan bearing pompa, ring penahan aus dan seal – seal.
Þ   Cara mengatasi kavitasi :
Ø  Tekanan fluida pada semua titik dalam pompa harus dipertahankan diatas tekanan uap. Jumlah yang digunakan untuk menentukan  supaya  tekanan zat cair yang dipompa mampu mengindari kavitasi adalah tinggi tekan hisap dikenal dengan NPSH (Net Positive Suction Head).
Ø  NPSH yang tersedia harus lebih besar atau sama dengan NPSH yang dibutuhkan, NPSHa ≥ NPSHr.
NPSH yang tersedia (NPSHa)
Tekanan yang dibutuhkan pada suction pompa yang lebih tinggi daripada tekanan uap cairan yang dipompa.
NPSH yang dibutuhkan (NPSHr)
NPSH minimum untuk menghindari kavitasi.
Ø  Meningkatkan NPSHA  
Ø  Cara meningkatkan NPSHA : 
Ø  Menambah tekanan pada hisapan pompa dengan cara meninggikan level zat cair di dalam tanki atau menambah tekanan pada daerah di atas zat cair untuk menambah tekanan hisap. 
Ø  Mengurangi temperatur zat cair yang dipompakan. Pengurangan temperatur zat cair yang dipompakan sehingga mengurangi tekanan uap yang akibatnya menaikan NPSHA. 
Ø  Mengurangi kehilangan head pada pipa hisap pompa dengan cara menambah diameter pipa, mengurangi jumlah elbow, katup dan fiting pada pipa, mengurangi panjang pipa.
Ø  Mengurangi NPSHR pompa
Ø  Cara mengurangi NPSHR :
Ø  Pengurangan jumlah aliran  yang melalui pompa dengan pengecilan katup buang akan mengurangi NPSHR.
Ø  NPSHR tergantung pada kecepatan pompa yaitu semakin cepat impeler pompa berputar  maka semakin besar NPSHR. Oleh karena itu kecepatan pompa harus dikurangi, sehingga NPSHR  pompa akan berkurang


Sumber : Perpustakaan Universitas Mercu Buana

Pengertian dari Pompa

POMPA ( PUMP)

Pompa adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan dengan cara menambahkan energi pada cairan yang dipindahkan dan berlangsung secara terus menerus.
Pompa beroperasi dengan prinsip membuat perbedaan tekanan antara bagian masuk (suction) dengan bagian keluar (discharge). Dengan kata lain, pompa berfungsi mengubah tenaga mekanis dari suatu sumber tenaga (penggerak) menjadi tenaga kinetis (kecepatan), dimana tenaga ini berguna untuk mengalirkan cairan dan mengatasi hambatan yang ada sepanjang pengaliran.

Pompa Sentrifugal
Salah satu jenis pompa pemindah non positip adalah pompa sentrifugal yang prinsip kerjanya mengubah energi kinetis (kecepatan) cairan menjadi energi potensial (dinamis) melalui suatu impeller yang berputar dalam casing.
Sesuai dengan data-data yang didapat, pompa reboiler debutanizer di Hidrokracking Unibon menggunakan pompa sentrifugal single - stage double suction.

Klasifikasi Pompa Sentrifugal
Pompa Sentrifugal dapat diklasifikasikan, berdasarkan :
1. Kapasitas :
  • Kapasitas rendah                       < 20 m3 / jam
  • Kapasitas menengah                     20 s/d 60 m3 / jam
  • Kapasitas tinggi                         > 60 m3 / jam
2. Tekanan Discharge :
  • Tekanan Rendah                        < 5 Kg / cm2
  • Tekanan menengah                       5 s/d 50 Kg / cm2
  • Tekanan tinggi                           > 50 Kg / cm2
3. Jumlah / Susunan Impeller dan Tingkat :
  • Single stage : Terdiri dari satu impeller dan satu casing
  • Multi stage   : Terdiri dari beberapa impeller yang tersusun seri dalam satu casing.
  • Multi Impeller : Terdiri dari beberapa impeller yang tersusun paralel dalam satu casing.
  • Multi Impeller – Multi stage :  Kombinasi multi impeller dan multi stage.
4. Posisi Poros :
  • Poros tegak
  • Poros mendatar

5. Jumlah Suction :
  • Single Suction
  • Double Suction
6. Arah aliran keluar impeller :
  • Radial flow
  • Axial flow
  • Mixed fllow

Bagian-bagian Utama Pompa Sentrifugal

Secara umum bagian-bagian utama pompa sentrifugal dapat dilihat sepert gambar  berikut :

Rumah Pompa Sentrifugal

A. Stuffing Box
Stuffing Box berfungsi untuk mencegah kebocoran pada daerah dimana poros pompa menembus casing.
B. Packing
Digunakan untuk mencegah dan mengurangi bocoran cairan dari casing pompa melalui poros. Biasanya terbuat dari asbes atau teflon.
C. Shaft (poros)
Poros berfungsi untuk meneruskan momen puntir dari penggerak selama beroperasi dan tempat kedudukan impeller dan bagian-bagian berputar lainnya.
D. Shaft sleeve
Shaft sleeve berfungsi untuk melindungi poros dari erosi, korosi dan keausan pada stuffing box. Pada pompa multi stage dapat sebagai leakage joint, internal bearing dan interstage atau distance sleever.
E. Vane
Sudu dari impeller sebagai tempat berlalunya cairan pada impeller.
F. Casing
Merupakan bagian paling luar dari pompa yang berfungsi sebagai pelindung elemen yang berputar, tempat kedudukan diffusor (guide vane), inlet dan outlet nozel serta tempat memberikan arah aliran dari impeller dan mengkonversikan energi kecepatan cairan menjadi energi dinamis (single stage).
G. Eye of Impeller
Bagian sisi masuk pada arah isap impeller.
H. Impeller
Impeller berfungsi untuk mengubah energi mekanis dari pompa menjadi energi kecepatan pada cairan yang dipompakan secara kontinyu, sehingga cairan pada sisi isap secara terus menerus akan masuk mengisi kekosongan akibat perpindahan dari cairan yang masuk sebelumnya.
I. Wearing Ring
Wearing ring berfungsi untuk memperkecil kebocoran cairan yang melewati bagian depan impeller maupun bagian belakang impeller, dengan cara memperkecil celah antara casing  dengan impeller.
J. Bearing
Beraing (bantalan) berfungsi untuk menumpu dan menahan beban dari poros agar dapat berputar, baik berupa beban radial maupun beban axial. Bearing juga memungkinkan poros untuk dapat berputar dengan lancar dan tetap pada tempatnya, sehingga kerugian gesek menjadi kecil.
 K. Casing
Merupakan bagian paling luar dari pompa yang berfungsi sebagai pelindung elemen yang berputar, tempat kedudukan diffusor (guide vane), inlet dan outlet nozel serta tempat memberikan arah aliran dari impeller dan mengkonversikan energi kecepatan cairan menjadi energi dinamis (single stage).

Kapasitas Pompa
Kapasitas pompa adalah banyaknya cairan yang dapat dipindahkan oleh pompa setiap satuan waktu . Dinyatakan dalam satuan volume per satuan waktu, seperti :
  • Barel per day (BPD)
  • Galon per menit (GPM)
  • Cubic meter per hour (m3/hr)
Head Pompa
Head pompa adalah energi per satuan berat yang harus disediakan untuk mengalirkan sejumlah zat cair yang direncanakan sesuai dengan kondisi instalasi pompa, atau tekanan untuk mengalirkan sejumlah zat cair,yang umumnya dinyatakan dalam satuan panjang.
Menurut persamaan Bernauli, ada tiga macam head (energi) fluida dari sistem instalasi aliran, yaitu, energi tekanan, energi kinetik dan energi potensial
Hal ini dapat dinyatakan dengan rumus sebagai berikut :


Karena energi itu kekal, maka bentuk head (tinggi tekan) dapat bervariasi pada penampang yang berbeda. Namun pada kenyataannya selalu ada rugi energi (losses).


Pada kondsi yang berbeda seperti pada gambar di atas maka persamaan Bernoulli adalah sebagai berikut :




1. Head Tekanan
Head tekanan adalah perbedaan head tekanan yang bekerja pada permukaan zat cair pada sisi tekan dengan head tekanan yang bekerja pada permukaan zat cair pada sisi isap.
Head tekanan dapat dinyatakan dengan rumus : 


2. Head Kecepatan
Head kecepatan adalah perbedaan antar head kecepatan zat cair pada saluran tekan dengan head kecepatan zat cair pada saluran isap.
Head kecepatan dapat dinyatakan dengan rumus :


3. Head Statis Total
Head statis total adalah perbedaan tinggi antara permukaan zat cair pada sisi tekan dengan permukaan zat cair pada sisi isap.
Head statis total dapat dinyatakan dengan rumus :
Z = Zd - Zs(5)
Dimana  :
Z   :   Head statis total
Zd  :   Head statis pada sisi tekan
Zs   :   Head statis pada sisi isap
Tanda  +   :   Jika permukaan zat cair pada sisi isap lebih rendah dari sumbu pompa (Suction lift).
Tanda  -   :  Jika permukaan zat cair pada sisi isap lebih tinggi dari sumbu pompa (Suction head).



4. Kerugian head (head loss)
Kerugian energi per satuan berat fluida dalam pengaliran cairan dalam sistem perpipaan disebut sebagai kerugian head (head loss).
Head loss terdiri dari :
a. Mayor head loss (mayor losses)
Merupakan kerugian energi sepanjang saluran pipa yang dinyatakan dengan rumus :


Harga f (faktor gesekan) didapat dari diagram Moody (lampiran - 6) sebagai fungsi dari Angka Reynold (Reynolds Number) dan Kekasaran relatif (Relative Roughness  - Îµ/D  ), yang nilainya dapat dilihat pada grafik (lampiran) sebagai fungsi dari nominal diameter pipa dan kekasaran permukaan dalam pipa (e) yang tergantung dari jenis material pipa.
Sedangkan besarnya Reynolds Number dapat dihitung dengan rumus :


b. Minor head loss (minor losses)
Merupakan kerugian head pada fitting dan valve yang terdapat sepanjang sistem perpipaan. Dapat dicari dengan menggunakan Rumus :

Dalam menghitung kerugian pada fitting dan valve dapat menggunakan tabel pada lampiran 4. Besaran ini menyatakan kerugian pada fitting dan valve dalam ukuran panjang ekivalen dari pipa lurus.

c. Total Losses
Total losses merupakan kerugian total sistem perpipaan, yaitu :


Daya Pompa

Daya pompa adalah besarnya energi persatuan waktu atau kecepatan melakukan kerja.
Ada beberapa pengertian daya, yaitu :
1.Daya hidrolik (hydraulic horse power)
Daya hidrolik (daya pompa teoritis) adalah daya yang dibutuhkan untuk mengalirkan sejumlah zat cair. Daya ini dapat dihitung dengan rumus :

2. Daya Poros Pompa (Break Horse Power)
Untuk mengatasi kerugian daya yang dibutuhkan oleh poros yang sesungguhnya adalah lebih besar dari pada daya hidrolik.
Besarnya daya poros sesungguhnya adalah sama dengan effisiensi pompa atau dapat dirumuskan sebagai berikut :

3. Daya Penggerak (Driver)
Daya penggerak (driver) adalah daya poros dibagi dengan effisiensi mekanis (effisiensi transmisi). Dapat dihitung dengan rumus :

Effisiensi Pompa
Effisiensi pada dasarnya didefinisikan sebagai perbandingan antara output dan input atau perbandingan antara HHP Pompa dengan BHP pompa.
Harga effisiensi yang tertinggi sama dengan satu harga effisiensi pompa yang  didapat dari pabrik pembuatnya.
Effisiensi pompa merupakan perkalian dari beberapa effiaiensi, yaitu:

Referensi utama :  Ir. Sularso, MSME dan Prof. Dr. Haruo Tahara, Pompa dan Kompresor, PT Pradnya Paramita, Jakarta, 1983.
 Lampiran :
 Grafik fungsi dari Angka Reynold (Reynolds Number) dan Kekasaran relatif (Courtesy ofwww.fao.org/) :






SYSTEM PENYEKAT PADA POMPA
Menyambung pembahasan saya mengenai pompa pada tulisan sebelumnya. Kali ini saya akan sedikit mengulas tentang system penyekatan (Sealing System).
Pemilihan yang tepat pada sebuah seal sangat penting bagi keberhasilan pemakaian pompa. Untuk mendapatkan kehandalan pompa yang terbaik, pilihan penyekat harus tepat antara jenis seal dan lingkungan yang dipakai.

Dasar-dasar Penyekat (Seal)

Ada dua jenis seal: statis dan dinamis.

Seal statis dipakai di mana tidak ada gerakan yang  terjadi  pertemuan antara kedua permukaan yang akan disekat. Gasket dan O-ring merupakan contoh yang umum dari seal statis.

Seal Dinamis digunakan di mana ada permukaan yang bergerak relatif terhadap satu sama lain. Seal dinamis  misalnya digunakan pada poros yang berputar dan menghantarkan  power melalui dinding sebuah tangki (Gambar 1), melalui casing dari pompa (Gambar 2), atau melalui rumah peralatan berputar lainnya seperti filter atau layar.


Contoh umum dari pemakaian alat-alat penyekat adalah penyekat untuk poros yang berputar pada pompa. Untuk mengetahui lebih banyak tentang fungsi dari penyekat ini, kita harus tahu terlebih dahulu dasar-dasar pengetahuan pompa.
Pada pompa sentrifugal, cairan masuk ke pompa melalui bagian ‘suction’ pada pusat (eye) impeller yang berputar. (gambar 3 dan 4).



Pada saat kipas impeller berputar, mereka menghantarkan gerakan untuk memasukan produk, yang kemudian meninggalkan impeller, dikumpulkan di dalam rumah pompa(casing) dan meninggalkan pompa melalui tekanan pada sisi keluar (discharge) pompa.
Tekanan discharge akan menekan beberapa produk ke bawah di belakang impeller menuju poros, di mana ia akan mencoba keluar sepanjang poros yang berputar. Pabrik pembuat pompa menggunakan berbagai macam teknik untuk mengurangi adanya tekanan produk yang mencoba keluar. Beberapa cara yang umum dilakukan adalah:
  1. Penambahan lobang penyeimbang (balance hole) melalui impeller untuk memberikan jalan bagi tekanan yang akan keluar melalui sisi isap impeller.
  2. Penambahan kipas pada sisi belakang impeller (back pump-out vanes).
Bagaimanapun juga, sepanjang tidak ada jalan untuk mengurangi adanya tekanan ini seluruhnya, maka peralatan penyekat mutlak diperlukan untuk membatasi keluarnya produk. Seperti penyekat kompresi (packing )atau penyekat mekanis (mechanical seals).
Stuffing Box Packing
Pengaturan penggunaaan ‘stuffing box’ ditunjukan pada gambar di bawah. Ia terdiri dari:
  1. 5 ring packing.
  2. Sebuah lantern ring yang digunakan untuk menginjeksi peluamas dan atau untuk membuang cairan
  3. Sebuah penekan (gland) untuk menahan packing dan menjaga kebutuhan tekanan yang disesuaikan dengan kondisi pengencangan packing.

Fungsi dari packing adalah untuk mengontrol kebocoran, bukan untuk mencegah seluruh kebocoran. Karena packing harus selalu terlumasi dan kebocoran yang dianjurkan untuk menjaga adanya pelumasan adalah sekitar 40 sampai 60 tetes per menit.
Metode pelumasan pada packing tergantung pada ko0ndisi cairan yang dipompa dan juga tekanan pada stuffing box. Ketika tekanan stuffing box di atas tekanan atmosfir dan cairan yang ditekan bersih dan tidak korosif, maka cairan pada pompa  itulah yang berfungsi sebagai pelumas paking. (gambar 6).



Tatkala tekanan pada stuffing box di bawah tekanan atmosfir, sebuah lantern ring di pasang dan pelumas di injeksikan ke dalam stuffing box. (gambar 7). Sebuah pipa bypass dari sisi tekan pompa ke penghubung lantern ring umumnya dipakai untuk menyediakan aliran cairan jika cairannya bersih.



Manakala cairan yang dipompakan kotor atau berpartikel, perlu diinjeksikan cairan pelumas yang bersih dari luar melalui lantern ring (gambar 8). Aliran sebanyak 0.2 sampai 0.5 gpm diperlukan dan sebuah keran pengatur serta flowmeter perlu dipasang untuk mendapatkan aliran yang akurat. Lantern ring biasanya dipasang pada tengah stuffing box, tetapi untuk cairan yang sangat kental seperti bahan baku kertas disarankan dipasang di leher stuffing box untuk menghindari tersumbatnya lantern ring.


Rumah packing (gland) pada gambar 5 sampai 8 merupakan tipe ‘quench gland’. Air, minyak atau cairan lainnya dapat diinjeksi ke dalam gland untuk mengurangi panas poros, ia dapat memperkecil perpindahan panas dari poros ke rumah bearing. Alasan inilah yang membolehkan temperatur kerja dari pompa lebih tinggi dari tempertur desain bearing dan pelumas.Tipe ‘quench gland’ yang sama dapat digunakan untuk mencegah keluarnya racun atau cairan berbahaya keluar ke udara luar di sekitar pompa. Ini dinamakan ‘smothering gland’, dengan mengalirkan cairan dari luar dan membawa kebocoran yang tidak diinginkan ke parit atau tangki pengumpul cairan bekas.

MECHANICAL SEAL

Pengertian
Mechanical Seal, apabila diterjemahkan secara bebas, adalah alat pengeblok mekanis. Namun penerjemahan tersebut menjadi lebih susah dimengerti dan dibayangkan bila dibandingkan pengertian teknisnya. Mengapa? Karena pengertian seal mekanis mengandung arti begitu luas. Apakah semua tipe seal mekanis bisa disebut dengan mechanical seal? O-ring merupakan seal mekanikal, demikian juga Labyrinth Seal, namun keduanya jelas bukan MechanicalSeal.

Mechanical seal yang dibahas pada situs ini adalah suatu tipe Seal yang dipakai pada pompa-pompa kelas industri, agitatormixer, chiller dan semua rotating equipment (mesin-mesin yang berputar).

Untuk mempermudah pemahaman, maka situs ini merasa perlu menyatakan penulisan mechanical seal yang ideal adalah Mechanical Seal dan disepakati terlebih dahulu bahwa mechanical seal pada dasarnya adalah masuk golongan seal. Seal tidak akan diterjemahkan namun diperjelas pengertiannya lewat serangkaian contoh.
Terminologi
Yang paling susah buat pemula adalah pengertian atas istilah-istilah yang digunakan dalam penyebutan bagian mechanical seal. Untuk itu mari kita samakan persepsi dahulu atas hal-hal sebagai berikut:

SHAFT adalah as/bagian poros sebuah alat dan merupakan bagian utama dari mesin-mesin yang berputar. Buku manual mesin-mesin lebih sering menggunakan kata shaft dibandingkan as.

SHAFT SLEEVE adalah sebuah bushing/adapter yang berbentuk selongsong yang terpasang pada shaft dengan tujuan melindungi shaft akibat pengencangan baut/screw MechanicalSeal.

SEAL adalah suatu part/bagian dalam sebuah konstruksi alat/mesin yang berfungsi untuk sebagai penghalang/pengeblok keluar/masuknya cairan, baik itu fluida proses maupun pelumas. Pada sepeda motor atau mobil sering kali bengkel bilang karet sil, sil-as kruk, oil-seal. Analogi lainnya, coba anda bayangkan sebuah aquarium. Apa yang akan terjadi jika kaca-kaca ditempelkan tanpa diberi lem kaca/sealant?
Lem kaca setelah mengeras, pada kondisi tersebut adalah seal. Bisa disepakati bahwa Seal lebih merujuk pada pengertian suatu fungsi. Apapun bentuk dan materialnya, apabila berfungsi untuk mencegah kebocoran, maka dia disebut sebagai Seal.

O-RING awalnya adalah merujuk pada karet berbentuk bundar yang berfungsi sebagai Seal. Perkembangan teknologi o-ring sebagai alat pengeblok cairan sekunder (secondary sealing device) menghasilkan berbagai tipe o-ring berdasarkan materialnya. Material o-ring, ada dari karet alam, EPDM, Buna, Neoprene, Viton, Chemraz, Kalrez, Isolast hingga tipe Encapsulated O-Ring, dimana o-ring dibalut dengan PTFE. Ada pula yang murni dibuat dari PTFE dan disebut dengan Wedge.

SEALFACE adalah bagian paling penting, paling utama dan paling kritis dari sebuah Mechanical Seal dan merupakan titik PENGEBLOK CAIRAN UTAMA (primary sealing device) Terbuat dari bahan Carbon atau Silicone Carbide atau Tungsten Carbide atau keramik atau Ni-resist, dengan serangkaian teknik pencampuran. Permukaan material yang saling bertemu (contact) dibuat sedemikian halusnya hingga tingkat kehalusan / kerataan permukaan mencapai 1 - 2 lightband.
Seringkali Sealface disebut juga dengan contact face. Seal faces berarti ada 2 sealface. Yang satu diam dan melekat pada dinding pompa, dan yang lainnya berputar, melekat pada shaft.
Yang berputar biasanya terbuat dari bahan yang lebih lunak/soft. Kombinasinya bisa berupa carbon versus silicone carbide, carbon vs ceramic, carbon vs tungten carbide, silicone carbide vs silicone carbide, silicone carbide vs tungsten carbide.
Setelah memahami bagian-bagian yang menyusun Mechanical Seal, maka bisa dilanjutkan bahwa MechanicalSeal adalah suatu sealing device yang merupakan kombinasi menyatu antara sealface yang melekat pada shaft yang berputar dan sealface yang diam dan melekat pada dinding statis casing/housing pompa/tangki/vessel/kipas.
Sealface yang ada pada shaft yang berputar seringkali disebut sebagai Rotary Face/Primary Ring. Sedangkan Sealface yang diam atau dalam kondisi stasioner sering disebut sebagai StationaryFace / Mating Ring / Seat.


Dengan demikian bisa diambil simpulan definisi Mechanical Seal adalah Sebuah alat pengeblok cairan/gas pada suatu rotating equipment, yang terdiri atas:
  1. Dua buah sealface yang bisa aus, dimana salah satu diam dan satunya lagi berputar, membentuk titik pengeblokan primer (primary sealing).
  2. Satu atau sekelompok o-ring/bellows/PTFE wedge yang merupakan titik pengeblokan sekunder (secondary sealing).
  3. Alat pembeban mekanis untuk membuat sealface saling menekan.
  4. Asesoris metal yang diperlukan untuk melengkapi rangkaian Mechanical Seal.
Cara Kerja Mechanical Seal
Titik utama pengeblokan dilakukan oleh dua sealfaces yang permukaannya sangat halus dan rata. Gesekan gerak berputar antara keduanya meminimalkan terjadinya kebocoran. Satu sealface berputar mengikuti putaran shaft, satu lagi diam menancap pada suatu dinding yang disebut dengan Glandplate.
Meterial dua sealfaces itu biasanya berbeda. Yang satu biasanya bersifat lunak, biasanyacarbon-graphite, yang lainnya terbuat dari material yang lebih keras seperti silicone-carbide.

Pembedaan antara material yang digunakan pada stationary sealface dan rotating sealfaceaalah untuk mencegah terjadinya 
adhesi antara dua buah sealfaces tersebut. Pada sealface yang lebih lunak biasanya terdapat ujung yang lebih kecil sehingga sering dikenal sebagai wear-nose (ujung yang bisa habis atau aus tergesek).



Ada 4 (empat) titik sealing/pengeblokan, yang juga merupakan jalur kebocoran jika titik pengeblokan tersebut gagal.

Silakan lihat gambar di atas. Titik pengeblokan utama (primary sealing) adalah pada contactface, titik pertemuan 2 buah sealfaces, lihat Point A. Jalur kebocoran di Point B diblok oleh suatu O-Ring, atau V-Ring atau Wedge (baca: WED). Sedangkan jalur kebocoran di Point C dan Point D, diblok dengan gasket atau O-Ring.

Point B, C & D disebut dengan secondary sealing.

KAVITASI

Kavitasi adalah fenomena perubahan phase uap dari zat cair yang sedang mengalir, karena tekanannya berkurang hingga di bawah tekanan uap jenuhnya. Pada pompa bagian yang sering mengalami kavitasi adalah sisi isap pompa. Hal ini terjadi jika tekanan isap pompa terlalu rendah hingga dibawah tekanan uap jenuhnya, hal ini dapat menyebabkan :
  • Suara berisik, getaran atau kerusakan komponen pompa tatkala gelembung-gelembung fluida tersebut pecah ketika melalui daerah yang lebih tinggi tekanannya
  • Kapasitas pompa menjadi berkurang
  • Pompa tidak mampu membangkitkan head (tekanan)
  • Berkurangnya efisiensi pompa.
Secara umum, terjadinya kavitasi diklasifikasikan atas 5 alasan dasar :
1. Vaporisation - Penguapan.
Fluida menguap bila tekanannya menjadi sangat rendah atau temperaturnya menjadi sangat tinggi. Setiap pompa sentrifugal memerlukan head(tekanan) pada sisi isap untuk mencegah penguapan. Tekanan yang diperlukan ini, disiapkan oleh pabrik pembuat pompa dan dihitung berdasarkan asumsi bahwa air yang dipompakan adalah 'fresh water' pada suhu 68oF. Dan ini disebut Net Positive Suction Head Available (NPSHA)
Karena ada pengurangan tekanan (head losses) pada sisi suction( karena adanya valve, elbow, reduser, dll), maka kita harus menghitung head total pada sisi suction dan biasa disebut Net Positive Suction Head is Required (NPSHR).
Nah nilai keduanya mempengaruhi terjadinya penguapan, maka untuk mencegah penguapan, syaratnya adalah :
NPSHA - Vp ≥ NPSHR
Dimana Vp : Vapor pressure fluida yang dipompa.
Dengan kata lain untuk memelihara supaya vaporization tidak terjadi maka kita harus melakukan hal berikut :
1. Menambah Suction head, dengan :
  • Menambah level liquid di tangki.
  • Meninggikan tangki.
  • Memberi tekanan tangki.
  • Menurunkan posisi pompa(untuk pompa portable).
  • Mengurangi head losses pada suction piping system. Misalnya dengan mengurangi jumlah fitting, membersihkan striner, cek mungkin venting tangki tertutup) atau bertambahnya speed pompa.
2. Mengurangi Tempertur fluida, dengan :
  • Mendinginkan suction dengan fluida pendingin
  • Mengisolasi suction pompa
  • Mencegah naiknya temperature dari bypass system dari pipa discharge.
3. Mengurangi NPSHR, dengan :
  • Gunakan double suction. Ini bias mengurangi NPSHR sekitar 25 % dan dalam beberapa kasus memungkinkan penambahan speed pompa sebesar 40 %.
  • Gunakan pompa dengan speed yang lebih rendah.
  • Gunakan impeller pompa yang memiliki bukaan 'lobang' (eye) yang lebih besar.
  • Install Induser, dapat mereduksi NPSHR sampai 50 %.
  • Gunakan pompa yang lebih kecil. Menggunakan 3 buah pompa kecil dengan ukuran kapasitas separuhnya, hitungannya lebih murah dari pada menggunakan pompa besar dan spare-nya. Lagi pula dapat menghemat energy.
 KAVITASI PADA POMPA (II)

Pada bagian pertama tulisan yang lalu, kita telah mengenal apa itu kavitasi, efek yang ditimbulkannya dan klasifikasi kavitasi,yaitu :

1. Vaporisation - Penguapan.
Selanjutnya kita kaji secara singkat klasifikasi yang kedua 

2. Air Ingestion - Masuknya Udara Luar ke Dalam System
Pompa sentrifugal hanya mampu meng'handle' 0.5% udara dari total volume. Lebih dari 6% udara, akibatnya bisa sangat berbahaya, dapat merusak komponen pompa.
Udara dapat masuk ke dalam system melalui beberapa sebab, antara lain :
  • Dari packing stuffing box (Bagian A - Lihat Gambar). Ini terjadi, jika pompa dari kondensor, evaporator atau peralatan lainnya bekerja pada kondisi vakum.
  • Letak valve di atas garis permukaan air (water line).
  • Flens (sambungan pipa) yang bocor.
  • Tarikan udara melalui pusaran cairan (vortexing fluid).
  • Jika 'bypass line' letaknya terlalu dekat dengan sisi isap, hal ini akan menambah suhu udara pada sisi isap.
  • Berkurangnya fluida pada sisi isap, hal ini dapat terjadi jika level cairan terlalu rendah.


Vortexing Fluida
Keduanya, baik penguapan maupun masuknya udara ke dalam system berpengaruh besar terhadap kinerja pompa yaitu pada saat gelembung-gelembung udara itu pecah  ketika melewati 'eye impeller'(Bagian G - Lihat Gambar) sampai pada sisi keluar (Sisi dengan tekanan yang lebih tinggi). Terkadang, dalam beberapa kasus dapat merusak impeller atau casing. Pengaruh terbesar dari adanya jebakan udara ini adalah berkurangnya kapasitas pompa.

3. Internal Recirculation - Sirkulasi Balik di dalam System
Kondisi ini dapat terlihat pada sudut terluar (leading edge) impeller, dekat dengan diameter luar, berputar balik ke bagian tengah kipas. Ia dapat juga terjadi pada sisi awal isap pompa.
Efek putaran balik ini dapat menambah kecepatannya sampai ia menguap dan kemudian 'pecah' ketika melalui tempat yang tekanannya lebih tinggi. Ini selalu terjadi pada pompa dengan NPSHA yang rendah. Untuk mengatasi hal tersebut, kita harus tahu nilai Suction Spesific Speed , yang dapat digunakan untuk mengontrol pompa saat beroperasi, berapa nilai terdekat yang teraman terhadap nilai BEP(Best Efficiency Point)  pompa yang harus diambil untuk mencegah terjadinya masalah.
Nilai Suction Spesific Speed yang diijinkan adalah antara 3.000 sampai 20.000. Rumus yang dipakai adalah :


Dimana :         
 rpm           = Kecepatan Pompa
Capacity    = Gallons per menit, atau liters per detik  dari impeller   terbesar pada nilai BEP(Best Efficiency Point) -nya.
Head         = Net Positive Suction Head is Required (feet atau meter)pada nilai rpm-nya.
Catatan penting :
  • Untuk pompa double suction, kapasitas dibagi 2 karena ada 2 impeller eyes.
  • Ideal untuk 'membeli' pompa dengan nilai Suction Spesific Speed kurang dari 8500(5200 metrik) kecuali untuk kondisi yang ekstrim.
  • Mixed Hydrocarbon dan air panas idealnya pada 9000 ÷ 12000 (5500÷7300 metric) atau lebih tinggi, lebih bagus.
  • Nilai Suction Spesific Speed yang tinggi menandakan impeller eye-nya lebih besar dari biasanya dan biasanya nilai efisiensinya disesuaikan dengan nilai NPSHR yang rendah.
  • Lebih tinggi nilai Suction Spesific Speed memerlukan desain khusus, operasinya memungkinkan adanya kavitasi.
  • Biasanya, pompa yang beroperasi dibawah 50% dari nilai BEP-nya tidakreliable.

Jika kita memakai open impeller, kita dapat mengoreksi internal recirculation dengan mengatur suaian(clearance) impeller sesuai dengan spesifikasi pabrik pembuatnya.


Jenis impeller
Untuk jenis Closed Impeller lebih banyak masalahnya dan kebanyakan pada prakteknya dikembalikan ke pabrik pembuatnya untuk di evaluasi atau mungkin didesain ulang pada impellernya atau perubahan ukuran suaian(clearance) pada wearing ring.

KAVITASI PADA POMPA (III)
 
Pada dua tulisan yang lalu : di sini dan di sini, kita telah mengenal apa itu kavitasi, efek yang ditimbulkannya dan klasifikasi kavitasi,yaitu :

1. Vaporisation - Penguapan.
2. Air Ingestion - Masuknya Udara Luar ke Dalam System
3. Internal Recirculation - Sirkulasi Balik di dalam System
Selanjutnya kita kaji secara singkat klasifikasi yang keempat :
4. Turbulence - Pergolakan Aliran
Kita selalu menginginkan aliran fluida pada kecepatan yang konstan. Korosi dan hambatan yang ada pada system perpipaan dapat merubah kecepatan fluida dan setiap ada perubahan kecepatan, tekanannya juga berubah. Untuk menghambat hal tersebut, perlu dilakukan perancangan system perpipaan yang baik. Antara lain memenuhi kondisi berikut :
Jarak minimum antara suction pompa dengan elbow yang pertama minimal 10 X diameter pipa.Pada pengaturan banyak pompa, pasang suction bells pada bays yang terpisah, sehingga satu sisi isap pompa tidak akan mengganggu yang lainnya. Jika ini tidak memungkinkan, beberapa buah pompa bisa dipasang pada satu bak isap (sump) yang besar, dengan syarat :
    • Posisi pompa tegak lurus dengan arah aliran.
    • Jarak antara dua 'center line' pompa minimum dua kali suction diameter.
    • Semua pompa dalam keadaan 'runing'.
    • Bagian piping upstream paling tidak memiliki pipa yang lurus dengan panjang minimal 10 x diameter pipa.
    • Setiap pompa harus memiliki kapasitas kurang dari 15.000 gpm.
    • Suaian dasar pompa seharusnya sekitar 30% diameter pipa isap.
    • Hubungan kedalaman pemasangan pompa dengan kapasitas disesuaikan dengan table berikut :
Kapasitas
Kedalaman Minimum
20,000 GPM
4 FEET
100,000 GPM
8 FEET
180,000 GPM
10 FEET
200,000 GPM
11 FEET
250,000 GPM
12 FEET
Untuk metrik :
Kapasitas
Kedalaman Minimum
4,500 M3/HR
1.2 METERS
22,500 M3/HR
2.5 METERS
40,000 M3/HR
3.0 METERS
45,000 M3/HR
3.4 METERS
55,000 M3/HR
3.7 METERS
5. Vane Passing Syndrome
Kerusakan akibat kavitasi jenis ini terjadi ketika diameter luar impeller lewat terlalu dekat dengan 'cutwater' pompa. Kecepatan aliran fluida ini bertambah tatkala alirannya melalui lintasan kecil tersebut, tekanan berkurang dan menyebabkan penguapan lokal. Gelembung udara yang terbentuk kemudian pecah pada tempat yang memiliki tekanan yang lebih tinggi, sedikit diluar alur cutwater. Hal inilah yang menyebabkan kerusakan padavolute(rumah keong) pompa.
Untuk mencegah pergerakan poros yang berlebihan, beberapa pabrik pembuat memasangbulkhead rings pada suction eye. Pada sisi keluar (discharge), ring dapat dibuat untuk memperpanjang sisi keluar dari dinding discharge sampai selubung impeller.

PENGARUH KAVITASI TERHADAP KINERJA POMPA
 
Pada empat tulisan sebelumnya kita telah mengenal pengaruh kavitasi dan klasifikasi kavitasi berdasarkan penyebab utamanya.
Kali ini kita kembali memperdalam pengaruh kavitasi ini secara lebih detil. Sebelumnya kita telah tahu pengaruh kavitasi secara umum adalah sebagai berikut :
  • Berkurangnya kapasitas pompa
  • Berkurangnya head (pressure)
  • Terbentuknya gelembung-gelembung udara pada area bertekanan rendah di dalam selubung pompa (volute)
  • Suara bising saat pompa berjalan.
  • Kerusakan pada impeller atau selubung pompa(volute).
Pada tulisan ini akan kita bahas kenapa semua itu bisa terjadi.
Kavitasi dinyatakan dengan cavities atau lubang di dalam fluida yang kita pompa. Lubang ini juga dapat dijelaskan sebagai gelembung-gelembung, maka kavitasi sebenarnya adalah pembentukan gelembung-gelembung dan pecahnya gelembung tersebut. Gelembung terbentuk tatkala cairan mendidih. Hati-hati untuk menyatakan mendidih itu sama dengan air yang panas untuk disentuh, karena oksigen cair juga akan mendidih dan tak seorang pun menyatakan itu panas.
Mendidihnya cairan terjadi ketika ia terlalu panas atau tekananya terlalu rendah. Pada tekanan permukaan air laut 1 bar (14,7 psia) air akan mendidih pada suhu 212oF (100oC). Jika tekanannya turun air akan mendidih pada suhu yang lebih rendah. Ada tabel yang menyatakan titik didih air pada setiap suhu yang berbeda. Sebagai contoh dapat dilihat tabel berikut :
Fahrenheit
Centigrade
Vapor pressure lb/in2 A
Vapor pressure (Bar) A
40
4.4
0.1217
0.00839
100
37.8
0.9492
0.06546
180
82.2
7.510
0.5179
212
100
14.696
1.0135
300
148.9
67.01
4.62
Satuan tekanan di sini yang digunakan adalah absolute bukan pressure gauge, ini jamak dipakai tatkala kita berbicara mengenai sisi isap pompa untuk menghindari tanda minus. Maka saat menyebut tekanan atmosfir nol, kita katakan 1 atm sama dengan 14,7 psia pada permukaan air laut dan pada sistim metrik kita biasa memakai 1 bar atau 100 kPa.
Kita balik ke paragraf pertama untuk menjelaskan akibat dari kavitasi, sehingga kita lebih tahu apa sesungguhnya yang terjadi.

Kapasitas Pompa Berkurang
  • Ini terjadi karena gelembung-gelembung udara banyak mengambil tempat(space), dan kita tidak bisa memompa cairan dan udara pada tempat dan waktu yang sama. Otomatis cairan yang kita perlukan menjadi berkurang.
  • Jika gelembung itu besar pada eye impeller, pompa akan kehilangan pemasukan dan akhirnya perlu priming (tambahan cairan pada sisi isap untuk menghilangkan udara).
Tekanan (Head) kadang berkurang
Gelembung-gelembung tidak seperti cairan, ia bisa dikompresi (compressible). Nah, hasil kompresi inilah yang menggantikan head, sehingga head pompa sebenarnya menjadi berkurang.

Pembentukan gelembung pada tekanan rendah karena mereka tidak bisa terbentuk pada tekanan tinggi.
Kita harus selalu ingat bahwa jika kecepatan fluida bertambah, maka tekanan fluida akan berkurang. Ini artinya kecepatan fluida yang tinggi pasti di daerah bertekanan rendah.
Ini akan menjadi masalah setiap saat jika ada aliran fluida melalui pipa terbatas, volute atau perubahan arah yang mendadak. Keadaan ini sama dengan aliran fluida pada penampang kecil antara ujung impeller dengan volute cut water.

Bagian-bagian Pompa Rusak
  • Gelembung-gelembung itu pecah di dalam dirinya sendiri, ini dinamakanimploding kebalikan dari exploding. Gelembung-gelembung itu pecah dari segala sisi, tetapi bila ia jatuh menghantam bagian dari metal seperti impeller atau voluteia tidak bisa pecah dari sisi tersebut, maka cairan masuk dari sisi kebalikannya pada kecepatan yang tinggi dilanjutkan dengan gelobang kejutan yang mampu merusak part pompa. Ada bentuk yang unik yaitu bentuk lingkaran akibat pukulan ini, dimana metal seperti dipukul dengan 'ball peen hammer'.
  • Kerusakan ini kebanyakan terjadi membentuk sudut ke kanan pada metal, tetapi pengalaman menunjukan bahwa kecepatan tinggi cairan kelihatannya datang dari segala sudut.
Semakin tinggi kapasitas pompa, kelihatannya semakin mungkin kavitasi terjadi. NilaiSpecific speed pump yang tinggi mempunyai bentuk impeller yang memungkinkan untuk beroperasi pada kapasitas yang tinggi dengan power yang rendah dan kecil kemungkinan terjadi kavitasi. Hal ini biasanya dijumpai pada casing yang berbentuk pipa, dari pada casing yang berbentuk volute seperti yang sering kita lihat